

uAvioni

George G2i User Guide

© 2021 uAvionix Corporation. All rights reserved.

uAvionix Corporation 300 Pine Needle Lane Bigfork, MT 59911

http://www.uavionix.com
support@uavionix.com

Except as expressly provided herein, no part of this guide may be reproduced, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express written permission of uAvionix. uAvionix grants permissions to download a single copy of this guide onto an electronic storage medium to be viewed for personal use, provided that the complete text of this copyright notice is retained. Unauthorized commercial distribution of this manual or any revision hereto is strictly prohibited.

uAvionix® and Ping® are registered trademarks of uAvionix Corporation, and may not be used without express permission of uAvionix.

1 Revision History

Revision	Date	Comments	
Α	6/9/2021	Initial release	
В	8/29/2021	G2 updates	
С	9/5/2021	SS2 and Compass Updates	
D	10/19/2021	Update parameters	
Е	7/7/2022	Update for RC Input	

O Limited Monagety

2 Limited Warranty

uAvionix products are warranted to be free from defects in material and workmanship for one year from purchase. For the duration of the warranty period, uAvionix, at its sole option, will repair or replace any product which fails under normal use. Such repairs or replacement will be made at no charge to the customer for parts or labor, provided that the customer shall be responsible for any transportation cost.

This warranty does not apply to cosmetic damage, consumable parts, damage caused by accident, abuse, misuse, water, fire or flood, damage caused by unauthorized servicing, or product that has been modified or altered.

IN NO EVENT, SHALL UAVIONIX BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, WHETHER RESULTING FROM THE USE, MISUSE OR INABILITY TO USE THE PRODUCT OR FROM DEFECTS IN THE PRODUCT. SOME STATES DO NOT ALLOW THE EXCLUSION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Warranty Service

Warranty repair service shall be provided directly by uAvionix.

3 (Conte	ents	
1	Revisi	on History	3
2	Limited	d Warranty	4
3 (Conte	nts	5
4	Specif	ication	7
4.1	l G	eorge Autopilot Technology	7
4.2	2 R	egulatory Statements	8
4	4.2.1	FCC Statement	8
4	4.2.2	Industry Canada Statement	8
4.3	3 M	echanical Specifications	9
5 I	Installa	ation	10
5.1	l G	eorge Mechanical Installation	10
5.2	2 G	eorge Electrical Installation	11
į	5.2.1	Example Electrical Connection for eVTOL	13
;	5.2.2	George RF Connections	15
5.3	3 sk	yStation Mechanical Installation	16
;	5.3.1	Tripod Installation	16
;	5.3.2	Pole Installation	17
5.4	l sk	yStation Electrical	18
6	Config	uration	20
6.1	l G	eorge Start-up and Connection	20
6.2	2 sk	yStation Start-up and Connection	21
(6.2.1	Run skyLinkApp.exe	21
(6.2.2	Configure Hop Table	22
(6.2.3	Verify Link	23
6.3	3 Co	onnecting George to Mission Planner	24
(6.3.1	George Direct Connect	24
(6.3.2	George Parameters	26

U George

6.3.3	3 Compass Configuration	28
6.3.4	Remote Connection to George	29
6.3.5	RC Connection to George	32
6.4	skyLinkApp.exe	33
6.4.1	I Status Tab	34
6.4.2 Maps Tab		36
6.4.3	B Configuration Tab	37
6.5	Configuration and Health Webpage	40
6.5.1	Firmware Information	42
6.5.2	2 Configuration Items	42
6.5.3 Network Configuration		43
6.5.4 skyStation Update		45
6.5.5 microLink Update		47

4 Specification

4.1 George Autopilot Technology

George combines the flexibility and over a decade's worth of open-source innovation in UAS autopilots with the robustness of a certifiable DAL-C hardware and a DAL-C safety and sensor processor. George has the aircraft.

- Lightweight and low power consumption
- Skyline Cloud-Based C2 Compatible
- TSO-C145e Global Positioning System (GPS) Coordinated Universal Time (UTC)
- Detect and Avoid Ready
- Environmental RTCA/DO-160G and MIL-STD-810H
- Software RTCA/DO-178C Level C
- Complex Hardware RTCA/DO-254 Level C
- FCC 47 CFR Part 15.247 ID 2AFFTC2XISM

Specification	Value	
Input Voltage/Power	2S-12S 2.5W	
Size	44x40x63mm	
Weight	63 grams	
Operating Temp	-10° to 55° C	
Internal Per		
Core	cubeOrange	
C2	uAvionix microLink	
ADS-B	uAvionix pingRXpro	
Compass	3 axis RM3100	
Airspeed	SDP33	
External In	terfaces	
Servo/ESC Outputs	9	
GPS Input	truFYX NMEA +PPS	
RS232 Serial IO	2	
UAVCAN IO	2	
ADC Inputs	2	
RC PPM/SBUS Input	1	
Top Level As		
George G2	UAV-1005692-001	
Options		
truFYXmicro TSO-C145e	UAV-1005511-001	
GPS Sensor		
skyStation2	UAV-1005507-001	
ADS-B antenna	UAV-1004675-002	
microLink antenna	UAV-1004675-001	
XT90 SERIES Adapter	UAV-1005476-001	

4.2 Regulatory Statements

4.2.1 FCC Statement

FCC ID: 2AFFTC2XISM

This device meets the FCC requirements for RF exposure in public or uncontrolled environments.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

4.2.2 Industry Canada Statement

IC ID: 25261-C2XISM

In order to comply with FCC / ISED RF Exposure requirements, this device must be installed to provide at least 20 cm separation from the human body at all times.

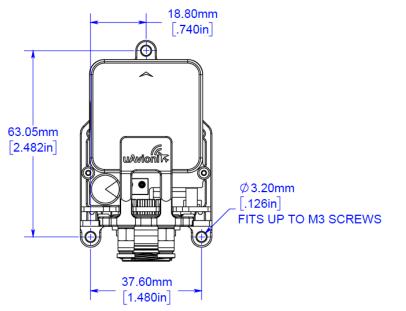
Afin de se conformer aux exigences d'exposition RF FCC / ISED, cet appareil doit être installé pour fournir au moins 20 cm de séparation du corps humain en tout temps.

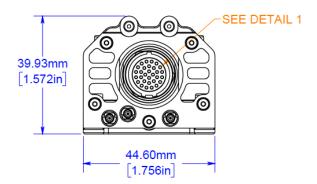
This device complies with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions:

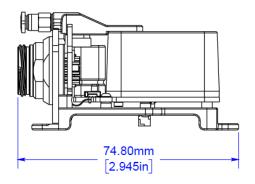
- (1) This device may not cause interference; and
- (2) This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

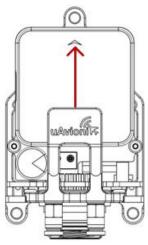
1) l'appareil ne doit pas produire de brouillage;

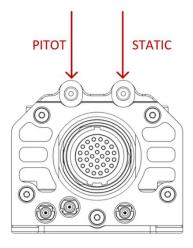





2) l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement."

4.3 Mechanical Specifications

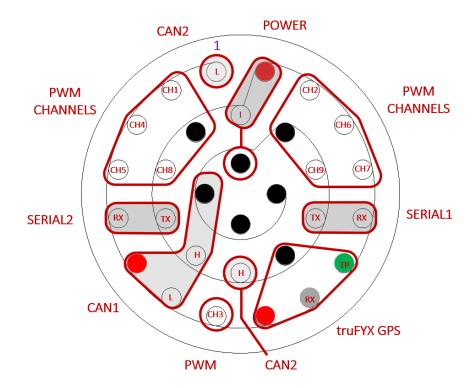


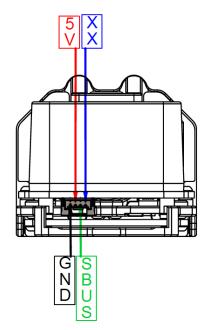

5 Installation

5.1 George Mechanical Installation

Mount the George AutoPilot on a flat solid surface near the Center of Gravity (CG) of the aircraft. Mount the George AutoPilot so that the arrow on top of the AutoPilot is pointed towards the nose of the aircraft. Use three M3 or #5 size screws to secure the George AutoPilot to the airframe at the three mounting locations.

Connect aircraft pitot and static pressure lines to <u>either</u> of the 3mm push fit connectors on the backside of the AutoPilot.





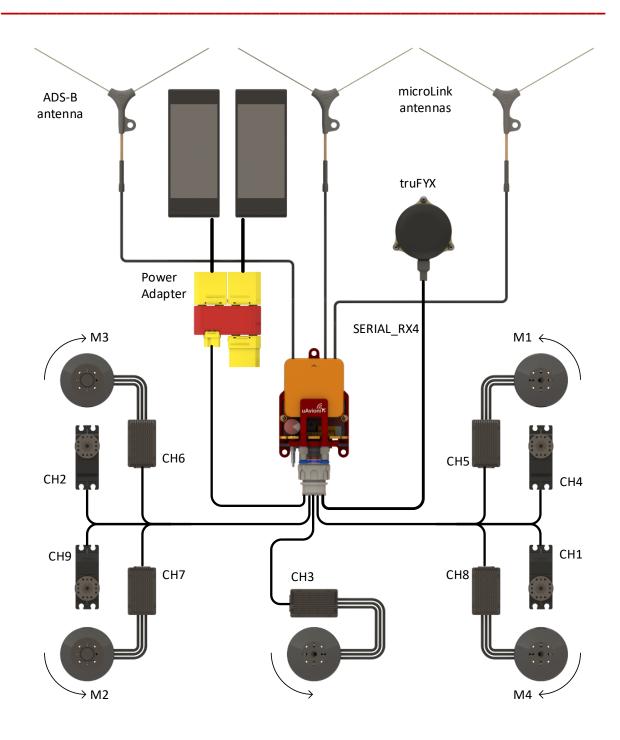
5.2 George Electrical Installation

Integrate the George AutoPilot to your platform. George offers 9 PWM channels, 2 external serial connections, 2 CanBus connections, 1 RC SBUS input and a power module capable of supporting up to two 6s LiPo batteries.

	Lemo					
	Pin	Name	Description	Resource	10	Level
	1	CAN2 L	CanBus2	Resource	10	3.3V
	2	IO CH1	PWM CH1	Servo/ESC	Output	3.3V
	3	IO CH4	PWM CH4	Servo/ESC	Output	3.3V
	4	IO CH5	PWM CH5	Servo/ESC	Output	3.3V
	5	SERIAL2_RX	TELEM2 Rx	Ping200X/ZPX-B	Input	EIA/TIA-232
	6	5V_CAN1	5V Output		Power	5V
	7	CAN1_L	CanBus1		UI	3.3V
	8	IO_CH3	PWM_CH3	Servo/ESC	Output	3.3V
	9	5V_SERIAL4	5V Output		Power	5V
	10	SERIAL4_RX	GPS PVT Data	truFYX GPS	Input	3.3V
	11	FYX_PPS	GPS PPS		Input	3.3V
	12	SERIAL1_RX	TELEM 1 Rx	SkyLink C-Band C2	Input	EIA/TIA-232
EXTERNAL	13	IO_CH7	PWM_CH7	Servo/ESC	Output	3.3V
CONNECTIONS	14	IO_ch6	PWM_CH6	Servo/ESC	Output	3.3V
LEMO 30-PIN	15	IO_CH2	PWM_CH2	Servo/ESC	Output	3.3V
LEIVIO 30-PIIN	16	V_BUS	Aircraft Power		Power	2S-12S
	17	CURRENT			Input	3.3V
	18	1ND	Aircraft Ground		Power	
	19	IO_CH8	PWM_CH8	Servo/ESC	Output	3.3V
	20	SERIAL2_TX	TELEM 2 Tx	Ping200X/ZPX-B	Output	EIA/TIA-232
	21	CAN1_H	CanBus1		10	3.3V
	22	CAN2_H	CanBus2		10	3.3V
	23	GND	Aircraft Ground		Power	
	24	SERIAL1_TX	TELEM1 Tx	SkyLink C-Band C2	Output	EIA/TIA-232
	25	FMU_CH1	PWM_CH9	Servo/ESC	Output	3.3V
	26	GND	Aircraft Ground		Power	
	27	GND	Aircraft Ground		Power	
	28	GND	Aircraft Ground		Power	
	29	GND	Aircraft Ground		Power	
	30	GND	Aircraft Ground		Power	

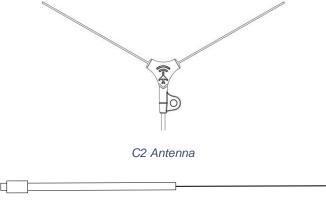
	Description	Resource	10	Level
	SERIAL3_RX	MicroLink C2 Radio	Input	3.3V
	SERIAL3_TX	WIICIOLITIK CZ RAUIO	Output	3.3V
INTERNAL	SERIAL5_RX	pingRXpro ADS-B	Input	3.3V
INTERNAL CONNECTIONS	I2C1_SCL	DM2100 Compace	Ю	3.3V
CONNECTIONS	I2C1_SDA	RM3100 Compass	10	3.3V
	I2C2_SCL	CDD22 Aircroad Concer	10	3.3V
	I2C2_SDA	SDP33 Airspeed Sensor	10	3.3V
	VOLTAGE		Power	3.3V

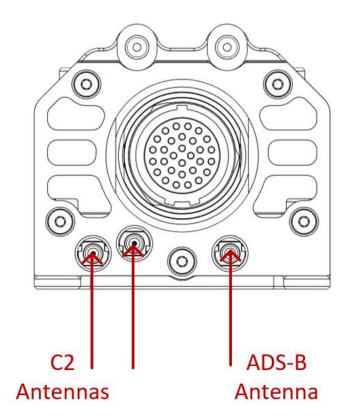
	JST-GH Pin	Name	Description	10	Level
RC INPUT JST- GH 4-PIN	1	NP			
	2	RC_Rx	PPM/SBUS RC Rx	Input	3.3V
	3	5V_RC	5V Output	Power	5V
	4	GND	Aircraft Ground	Power	



5.2.1 Example Electrical Connection for eVTOL

eVTOL				
Parameters	Resource	Description	Parameter	Value
	PWM_CH1	Starboard Elevon Servo	FUNCTION	80:VTailRight
	PWM_CH2	Port Aileron Servo	FUNCTION	4:Aileron
	PWM_CH3	Pusher Motor	FUNCTION	70:Throttle
	PWM_CH4	Starboard Aileron Servo	FUNCTION	4:Aileron
	PWM_CH5	Starboard Forward Motor 1	FUNCTION	33:Motor1
	PWM_CH6	Port Forward Motor 3	FUNCTION	35:Motor3
	PWM_CH7	Port Aft Motor 2	FUNCTION	34:Motor2
	PWM_CH8	Starboard Aft Motor 4	FUNCTION	36:Motor4
	PWM_CH9	Port Elevon Servo	FUNCTION	79:VTailLeft
	SERIAL_4	GPS Data	BAUD	115:115200
			PROTOCOL	5:GPS
	SERIAL_3	TELEMETRY	BAUD	57:57600
			PROTOCOL	1:MAVlink1
	SERIAL_5	ADS-B	BAUD	57:57600
			PROTOCOL	1:MAVlink1
	CURRENT	Current ADC input	BATT_CURRENT_PIN	15:CubeOrange
	VOLTAGE	Voltage ADC Input	BATT_VOLT_PIN	14:CubeOrange
	I2C1	RM3100 Compass		
	I2C2	SDP33 Airspeed		





5.2.2 George RF Connections

Three antennas are included with the George Autopilot, two 915 MHz dipole antennas for the C2 radio, and one feeder ADS-B antenna. The 915 MHz Dipole antennas should be mounted in a vertical orientation.

ADS-B Antenna

5.3 skyStation Mechanical Installation

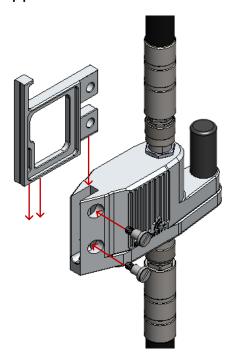
5.3.1 Tripod Installation

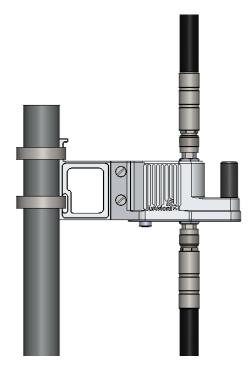
Mount the skyStation to a conventional tripod using a standard $\frac{1}{4}$ "-20 screw. Mounting location is on the bottom of the skyStation as shown below.

Place the skyStation at a vantage point to achieve adequate coverage and optimal line-of-sight to the autopilot.

Note!

skyStation and George AutoPilot must be at least 20 feet apart to acquire a link.



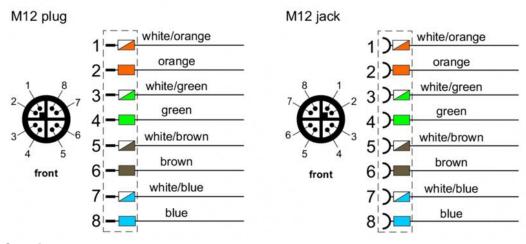


5.3.2 Pole Installation

Attach the pole mounting bracket to the skyStation and secure using the two supplied M5 shoulder screws.

Use the supplied hose clamps to secure the skyStation to the mounting pole. Antenna orientation should be vertical.

5.4 skyStation Electrical


The skyStation connects to a network via POE using an M12 connector.

Suggested cable part #: 142M2X15050

Suggested accessory: RJ45 Coupler

POE Specifications:

Parameter	Value
Standard	803.3af (802.3at Type1)
Maximum power	15.4W
Voltage Range	37 – 57V
Maximum Current	350mA
Maximum Cable Resistance	20Ω
Supported Cabling	Shielded Cat 3 and Shielded Cat 5
Supported Modes	Mode A (endspan), Mode B (midspan)
Power Management	Power Class 0
Maximum Cable Length	100 meters

Caution!

Absolute maximum DC voltage +57 V. A higher DC voltage value will permanently damage the equipment!

POF Switch

6 Configuration

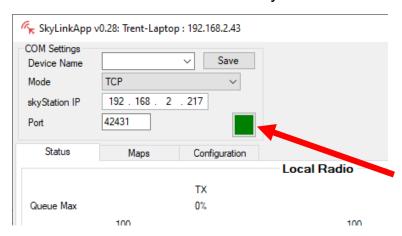
6.1 George Start-up and Connection

Power on the George AutoPilot by connecting to the aircraft power system. Once George acquires a GPS lock, a C2 link can be made.

A C2 link can only be made when a skyStation is powered on within proximity. Link cannot be achieved unless both the skyStation and George Autopilot have a GPS lock.

Note!

skyStation and George AutoPilot must be at least 20 feet apart to acquire a link


6.2 skyStation Start-up and Connection

Connect the skyStation to a POE capable network switch. At power-up an IP address will be assigned to the skyStation by the local DHCP server. By default, the skyStation will accept TCP connections for User channel information on TCP port 42430 and the Control channel information on port 42431. An IP Scan can be used to find the IP address of the skyStation. MAC addresses are printed on the skyStation label.

See section 6.5.3 for configuring the network settings on skyStation.

6.2.1 Run skyLinkApp.exe

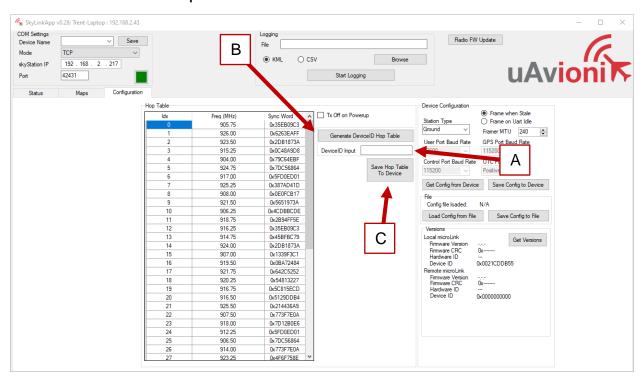
In the skyLinkApp.exe, configure the Mode Settings to TCP, enter the IP address of the skyStation, and enter the default Control port 42431. The Status box in the upper left-hand corner will turn green indicating a successful connection to the skyStation.

NOTE: If you are not able to connect to the skyStation it is likely your firewall is blocking access on port 42431. Please setup your firewall to allow skyLinkApp.exe TCP access on port 42431.

Please see section 6.5.3 to change or view the network configuration settings on the skyStation. See section 6.4 for more details on the skyLinkApp.



C.O.O. Osuffurus Hen Table

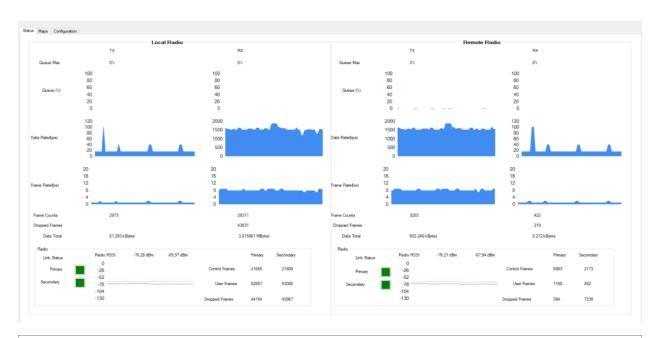

6.2.2 Configure Hop Table

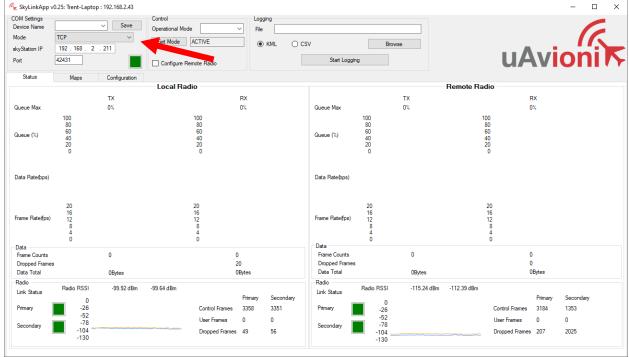
Once connected via the SkyLinkApp, go to the Configuration tab.

At first power up the user may need to configure the Hop Table to link with the George G2. On the label on the George G2 is a radio ID.

- A. Enter the radio ID into the "DeviceID Input" field on the SkyLinkApp.
- B. Press the "Generate DeviceID Hop Table" button
- C. Press "Save Hop Table To Device"

The skyStation and George G2 now share the same unique Hop Table.

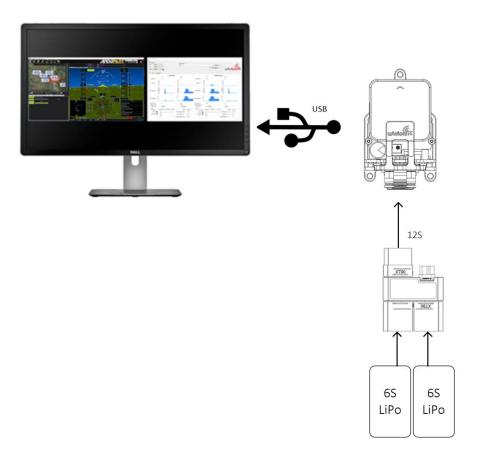




6.2.3 Verify Link

To verify link go to the Status Tab of the skyLinkApp. When the data arrives, skyLinkApp will begin graphing the radio link statistics.

6.3 Connecting George to Mission Planner


Download and install Mission Planner from:

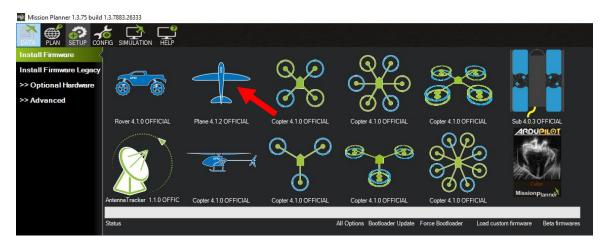
http://firmware.ardupilot.org/Tools/MissionPlanner/

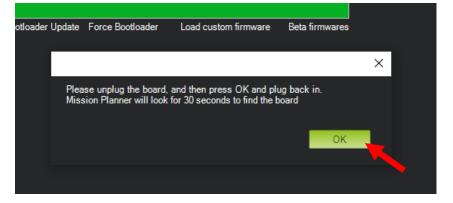
http://ardupilot.org/planner/docs/mission-planner-installation.html

6.3.1 George Direct Connect

Connect the George AutoPilot directly to a PC using a micro-USB cable. The connection point on the George AutoPilot is on the side of the Cube Orange. External power must be supplied to the George AutoPilot.

Open Mission Planner and in the upper right-hand corner select the corresponding MAVLINK COM port for the George Autopilot and hit CONNECT.





Note: On first power up, it may be required to setup the AutoPilot with Mission Planner. To do this, keep Mission Planner disconnected from the George AutoPilot. Go to the SETUP tab and the Install Firmware section. George AutoPilot comes default with an Airplane 4.2.2 configuration. Select your platform style and follow the instructions on Mission Planner to setup the AutoPilot.

C.O.O.O. anno Bonometone

6.3.2 George Parameters

Once connected to the George AutoPilot through Mission Planner, change the following parameters in Mission Planner. (CONFIG>Full Parameter List)

Function	Parameter	Value	Description
GPS	GPS_AUTO_CONFIG	0	Disable GPS Auto Config
	GPS_AUTO_SWITCH	0	Use Primary GPS
	GPS_SAVE_CONFIG	0	Disable GPS Save Config
	GPS_TYPE	5	GPS = NMEA
	SERIAL4_BAUD	115	Baud Rate = 115200
	SERIAL4_PROTOCOL	5	Serial 4 = GPS
	BRD_SAFETYENABLE	0	Disable Safety Switch
Airspeed	ARSPD_TYPE	6	Airspeed Sensor = i2C – SDP3X
	ARSPD_USE	1	Enables Airspeed Sensor
	ARSPD_BUS	0	Internal i2C bus
	ARSPD_PIN	0	Disable Analog Airspeed Pin
	ARSPD_PRIMARY	0*	Enable First Sensor
	ARSPD_AUTOCAL	0*	Disable In-Flight Autocal
	ARSPD_TUBE_ORDE R	2*	Either port can be used for Static/Pitot
	ARSPD_RATIO	2.0 *	Pitot tube Pressure/Velocity
	ARSPD_PSI_RANGE	1*	PSI Range for sensor
	ARSPD_SKIP_CAL	1	Startup offset calibration disable
C2	SERIAL3_BAUD	57	Baud Rate = 57600
	SERIAL3_PROTOCOL	1	MavLink 1 Protocol
**ADS-B	SERIAL5_BAUD	57*	Baud Rate = 57600
	SERIAL5_PROTOCOL	1*	MavLink 1 Protocol
	SERIAL5_OPTIONS	1024	Don't forward mavlink to/from
	***ADSB_TYPE	1	Enable uAvionix ADSB
	ADSB_EMIT_TYPE	14*	Emitter Category = UAV
	ADSB_RF_CAPABLE	3	RX UAT and 1090ES
	ADSB_RF_SELECT	1*	RX Only
Battery	BATT_MONITOR	4	Analog Voltage and Current
	BATT_AMP_PERVLT	27.7347	Current Sensing Calibration
	BATT_CURR_PIN	15	Current Pin for Cube Orange
	BATT_VOLT_MULT	19.54	Voltage Sensing Calibration
	BATT_VOLT_PIN	14	Voltage Pin for Cube Orange

^{*}Default Ardupilot value

^{**}Other ADS-B Parameters may not be visible unless ADSB_Type is configured to 1 and a "Refresh Params" is initiated.

***In Plane and Copter versions predating 4.1.0, ADSB_Type is replaced with ADSB_Enable.

Click "Write Params" when finished and cycle the power.

6.3.3 Compass Configuration

George contains an internal RM3100 compass for heading reference. The RM3100 delivers improved accuracy over the Cube integrated compass and is connected via the internal i2C bus. George will automatically detect the RM3100 and assign a DevID, no parameter changes are necessary for the RM3100 to be properly identified.

Configure the RM3100 as primary prior to calibration.

- a. Under the "SETUP" tab in Mission Planner navigate to the "Compass" window.
- b. Move the RM3100 to compass priority one position.
- c. Uncheck the boxes for "Use Compass 2" and "Use Compass 3" located midway down the Compass dialog.
- d. Reboot George via the "Reboot" button.

Compass orientation will be automatically set by default after calibration. Use the appropriate orientation for your George installation. In a standard installation the orientation would be set to None.

The RM3100 is now ready for calibration. Follow the Mission Planner compass calibration instructions via the link below.

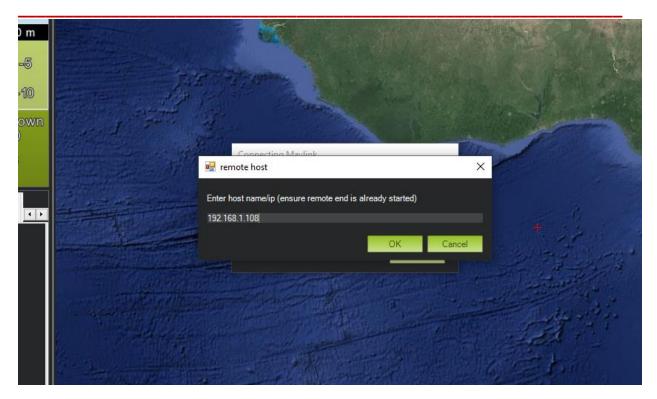
https://ardupilot.org/copter/docs/common-compass-calibration-in-mission-planner.html

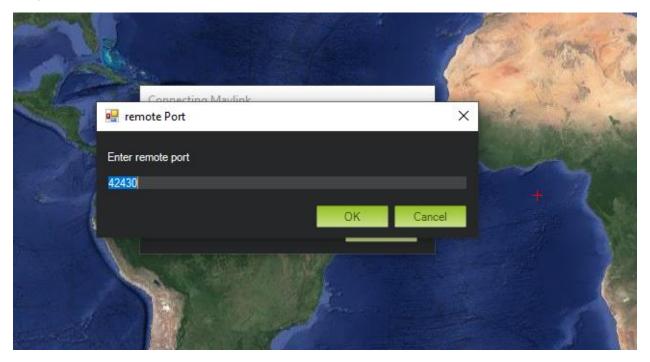
6 2 4 Pomoto Connection to Coorgo

6.3.4 Remote Connection to George

The George AutoPilot must be preconfigured to establish a remote connection. Follow procedures in sections 6.3.1 and 6.3.2 to configure the AutoPilot.

Verify that the George AutoPilot and skyStation are powered, linked, and that skyLinkApp.exe is receiving data. Run Mission Planner and select the communications drop down menu.


Select TCP as the communication mode and hit the Connect button on the upper right-hand corner.


Enter the skyStation IP address and click OK.

Enter the User TCP port number as shown on the skyStation configuration page (see section 6.4.3) and click OK. The default port number is 42430.

Mission Planner will begin retrieving parameters when a successful TCP connection has been made.

The user now has full remote access to the George AutoPilot.

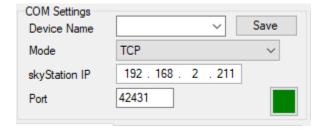
6.3.5 RC Connection to George

The George G2i offers users to connect an external RC receiver via PPM or SBUS through the 4 pin JST connector. RC transmitter and receiver binding procedures are done independently of the George setup. Follow the manufacturer's specified instructions for binding.

Once transmitter and receiver are bound, power up the George G2 and proceed with the aircraft configuration.

ENSURE THE AIRCRAFT IS DISARMED AND ALL PROPS HAVE BEEN REMOVED WHILE CONFIGURING

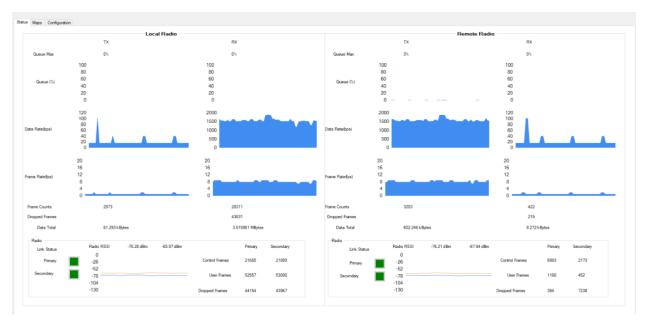
From the Setup tab in Mission Planner, go to the Radio Calibration screen under Mandatory Hardware. Here you can calibrate the RC Transmitter, set PWM limits, and verify radio channel inputs.



C. A. alayli interaction

6.4 skyLinkApp.exe

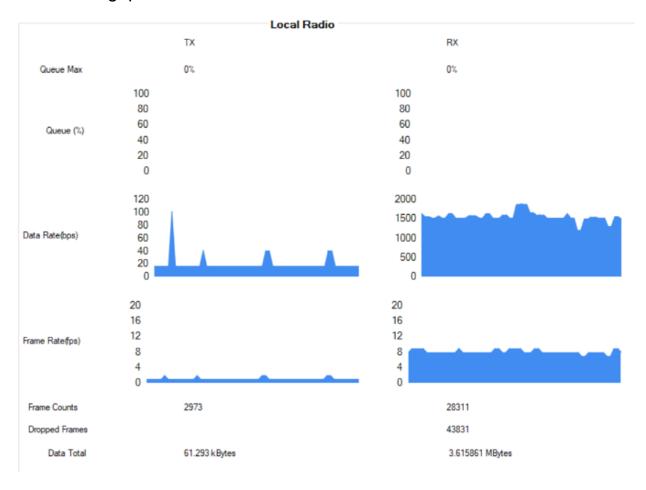
skyLinkApp.exe is the uAvionix Control channel monitoring application used for showing Status, Maps, and Configuration information. It can be connected to the skyStation in TCP mode and the ports are configurable for network flexibility. The mode and port selection must match the skyStation Configuration page setup and the IP address is always the IP address of the skyStation. See section 6.4.3.



C A A Ctatus Tab

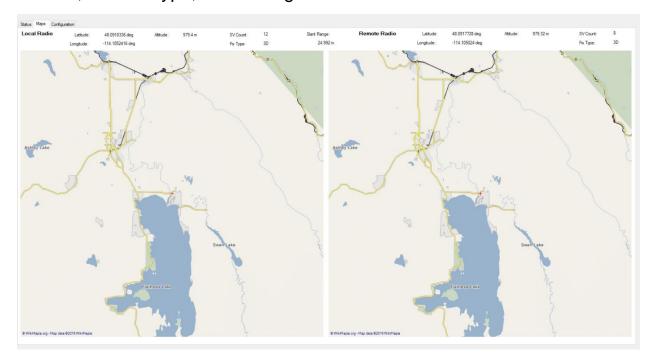
6.4.1 Status Tab

The status data is shown for both the local and the remote radios. It contains both transmit and receive information for the local and remote radios. This information includes memory queue depth information, transmit and receive data rates, frame rates, dropped frames and data totals. It also shows the RSSI's on the primary and secondary radios for both the local and remote radios giving the user comprehensive information on the state of the system.



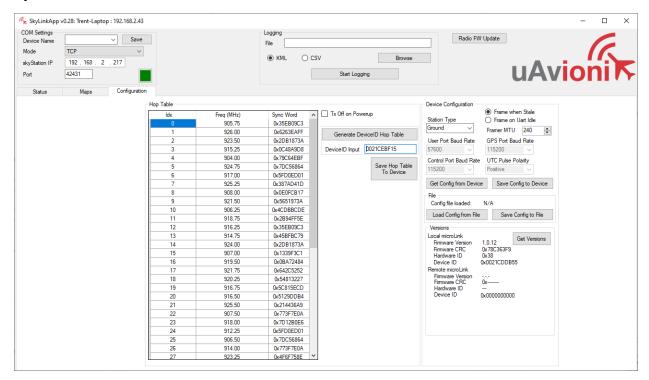
Radio throughput and statistics detail shown below.

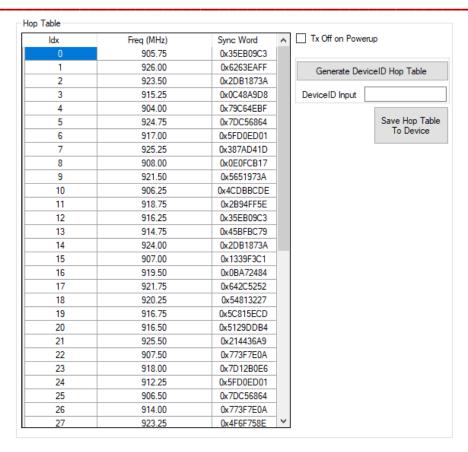
RSSI detail shown below.



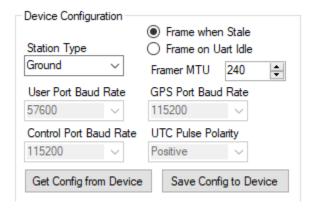
6.4.2 Maps Tab

skyLinkApp.exe has a mapping tab for mapping the local radio skyStation radio as well as the remote aircraft radio. It includes latitude, longitude, altitude, GPS fix type, Slant Range and SV count.



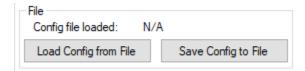

6.4.3 Configuration Tab

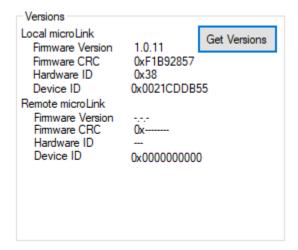
skyLinkApp.exe also contains a Configuration page. This page is used for device settings and setup as well as selecting the hop table scheme for the system.



U George

Generate DeviceID Hop Table	Generates the Hop Table per the DeviceID input
DeviceID Input 0021CEBF15	DeviceID input allows the user to enter the airborne radio ID to match Hop Tables.
Save Hop Table To Device	Saves the Hop Table currently displayed in the Hop Table window to the device.





Shows current device configuration. Clicking the Get Config from Device button will pull the configuration parameters currently stored on the device and display

them in the window. Clicking the Save Config to Device button will push any new configuration parameters to the device.

The File window allows the user to save or load all the Configuration parameters to a PC.

The Versions window shows the microLink radio information for both the Local radio, and the Remote radio when a Link has been made.skyStation

6.5 Configuration and Health Webpage

The skyStation IP address can be determined by accessing the local DHCP server and reviewing the connected devices or by using industry accepted network scanning tools. Directions for each DHCP server, router, or network scanning tool differ. Refer to the instruction manual for these devices or tools to help determine the IP address assigned to the skyStation. The MAC address for each skyStation can be found on the device housing.

The following pages can be viewed in your web browser.

Note nnn.nnn.nnn is the IP address of the skyStation.

skyStation base URL:

http://nnn.nnn.nnn.nnn/

Displays Health statistics, position and version information. Use to program the target UDP address and Port number.

skyStation status URL:

http://nnn.nnn.nnn/stats

Displays the status json sentence.

skyStation update URL:

http://nnn.nnn.nnn/update

Provides ability to update skyStation firmware.

The base URL displays configuration items as well as dynamic skyStation health statistics. The defaults for the User and Control channel connections is shown. All parameters can also be modified to fit your network needs.

← → C ▲ Not secure | 192.168.2.217 Firmware Information SkyStation Version: V 0. 0.10 Radio Version: V1.0.11 Node ID: 0x21CDDB55 **Settings** Skyline Information Websocket URL: Datamux Information IP Address: (0.0.0.0 for listen) 0.0.0.0 42430 User Port: Control Port: 42431 Network Configuration

Status Information

Save

Name	Value
Up Time	7h:33m:28s
GPS Fix	3
Num GPS Sats	9
Latitude	48.0914496
Longitude	-114.1049344
GPS Altitude	2956
PPS Detected	true
SkyLine Up Time	0s
User Skt Up Time	0s
Ctrl Skt Up Time	37m:8s
Mission Timeout	0

6.5.1 Firmware Information

The skyStation firmware version, microLink radio version and the microLink radio ID associated are displayed here. The user can update the skyStation through the webpage by clicking the "update" link and the microLink Radio through the SkyLinkApp. see section 0 and 0.

6.5.2 Configuration Items

Configuration Item	Description
Websocket URL	When using Skyline or a websocket to manage missions, the mission data will be forwarded through to the URL address entered in this field.
Data Mux IP Address	When this parameter is 0.0.0.0, the skyStation will act as a TCP server and listen for incoming connections. Alternatively, if this address is a valid IP address, the skyStation will act as a TCP client and will attempt to connect to a TCP server listening on [User TCP IP Address: User TCP Port]. 0.0.0.0 is the default setting for this parameter.
Data Mux User Port	This is the port number used for the User connection. Typically, the ground control software uses the User connection to communicate with the aircraft. The skyStation listens on this port and forwards any received TCP datagrams from ethernet to the aircraft. Any User connection data coming from the aircraft will be sent as an ethernet TCP datagram to [User TCP IP Address: User TCP Port].
Data Mux Control Port	This is the port number used for the Control connection. The Control connection is used for device configuration and device monitoring. The skyStation will forward all internal data metrics through this port.

When you modify any configuration item, press the Save button to store the changes. These fields are non-volatile and persist through power cycles.

Save

The Status Information section shows real time statistics updated once every second. It will show skyStation Up Time, GPS and PPS metrics. It will also show SkyLine metrics when connected through to the websocket.

Status Information

Name	Value
Up Time	7h:43m:57s
GPS Fix	3
Num GPS Sats	10
Latitude	48.0914496
Longitude	-114.1049344
GPS Altitude	2957
PPS Detected	true
SkyLine Up Time	0s
User Skt Up Time	0s
Ctrl Skt Up Time	47m:37s
Mission Timeout	0

6.5.3 Network Configuration

Clicking the Network Configuration link on the main landing page will forward you to the Network Configuration page where the user can adjust the network connectivity settings used by the skyStation when a DHCP server is not available.

Network Configuration

IP Address: 192.168.1.1
Subnet Mask: 255.255.255.0

Gateway Address: 0.0.0.0

DNS Server Address: 0.0.0.0

Save

Main Page

Configuration Item	Description
IP Address	This is the IP address number of the skyStation which will be used when a DHCP server is not available. The
	network administrator should assign this number.
Subnet Mask	Mask used with the skyStation IP address to differentiate between local and remote subnet destinations.
Gateway IP Address	Address used to send packets out of the local network.
DNS Address	IP address of the Domain Name Service.

When you modify any configuration item, press the Save button to store the changes. These fields are non-volatile and persist through power cycles.

6.5.4 skyStation Update

The firmware on the skyStation can be updated through the skyStation Configuration Webpage by clicking the Update link next to the version number.

Firmware Update

Choose the appropriate file to upload and click Start Update.

DO NOT power off the skyStation or close the web browser until the update is complete.

Firmware Update

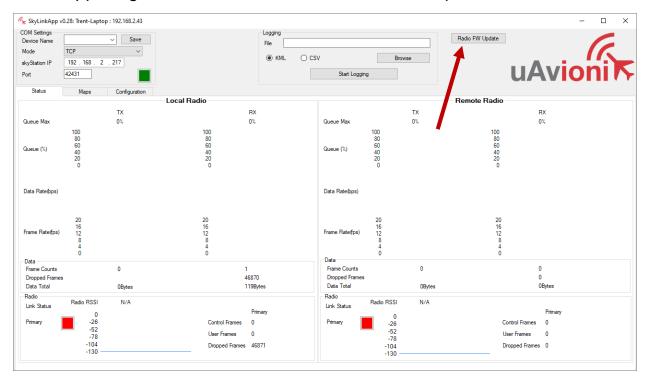
Update file transfer complete. Rebooting...

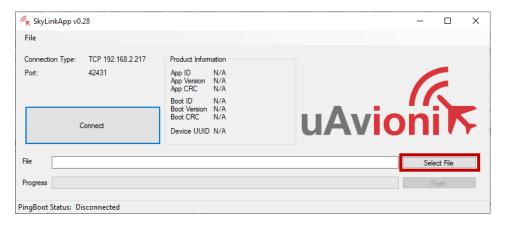
Choose File SkyStationF7_V0.0.5.uav

Start Update

Main Page

When the file transfer is complete, click the Main Page link to return to the skyStation Configuration Webpage. The version number on the Configuration Webpage should reflect the firmware version uploaded.

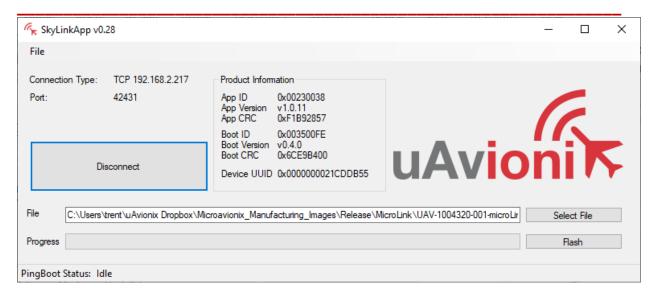



6.5.5 microLink Update

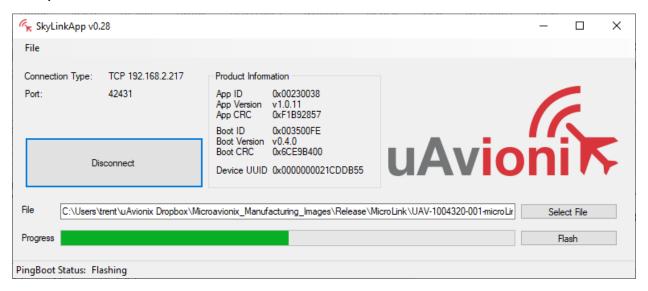
The microLink Radio on the skyStation can be updated using the SkyLinkApp. First connect the SkyLinkApp to the skyStation following the steps in section 6.2.

In the upper right hand corner click the "Radio FW Update" button.

A new window will open. First click "Select File" and select the correct firmware file to upload.



Then click the "Connect" button. The Product Information window will populate with radio information when a connection is made, and the PingBoot Status in the bottom left will change to "Idle"



Click "Flash" DO NOT power off or disconnect the device until the flash is complete.

