uAvionik

Ping200Sr Interface Control Document

© 2017 uAvionix Corporation. All rights reserved.
300 Pine Needle Lane
Bigfork, MT 59911
http://www.uavionix.com
support@uavionix.com

Except as expressly provided herein, no part of this guide may be reproduced, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express written permission of uAvionix. uAvionix grants permissions to download a single copy of this guide onto an electronic storage medium to be viewed for personal use, provided that the complete text of this copyright notice is retained. Unauthorized commercial distribution of this specification or any revision hereto is strictly prohibited.
uAvionix ${ }^{\circledR}$ is a registered trademark of uAvionix Corporation, and may not be used without express permission of uAvionix.

Contents

1 Revision History 4
2 GDL90 5
2.1 Physical Interface. 5
2.2 Control Messages 5
2.2.1 Callsign Message [^CS] 6
2.2.2 Mode Message [^MD] 7
3 SAGETECH 8
3.1 Preflight [0x02] 9
3.2 Operating [0x03] 10
3.3 Data Request [0x05] 11
3.4 GPS Data (Ping200S Only) [0x04] 12
3.4.1 GPS Message Payload - GPS Longitude [0x04 bytes 0 - 10] 13
3.4.2 GPS Message Payload - GPS Latitude [0x04 bytes 11-20] 14
3.4.3 GPS Message Payload - Speed over Ground and Course over Ground [0x04 bytes 21 - 34] 15
3.4.4 GPS Message Payload - Hemisphere and Time of Fix (GPS Time) [0x04 bytes 35-51] 16

1 Revision History

Revision	Date	Comments
A	$11 / 6 / 2016$	Initial release.
B	$12 / 3 / 2017$	Formatting changes
C	$8 / 22 / 2018$	Update to match User and Installation Guide

2 GDL90

The Ping200SR receives control messages over the Control interface. The interface uses an ASCII-text basis, with an ASCII-encoded hexadecimal checksum. The checksum is algebraic sum of the message byte values. Messages are delimited with a carriage return character.

2.1 Physical Interface

The Control interface uses RS-232 signaling levels. The port is configured for the following characteristics:

- Baud Rate: 57600 baud
- Start Bits: 1
- Data Length: 8
- Stop Bits: 1
- Parity: None
- Flow Control: None
-

2.2 Control Messages

The following table summarizes the Control messages that the Ping200SR receives.

Msg ID	Description	Retes	
\wedge CS	Call Sign	1 min interval or on change	2.2 .1
\wedge MD	Operating Mode Message	1 second interval (nominal)	2.2 .2

2.2.1 Callsign Message [${ }^{\wedge} \mathrm{CS}$]

This message provides for a user selectable callsign.
Rate:

Message Length: | Every 1 minute or when a change occurs |
| :--- |
| 15 bytes |

Example: ^CS UAVIONIX87\r

2.2.2 Mode Message [^MD]

The mode message indicates the current operating mode. It includes the current mode, the Ident status, current squawk code setting and emergency code.

Rate:
Message Length:

1 sec (nominal)
17 bytes

Byte	Contents	Description
1	$‘ \wedge$	ASCII ‘^' $(0 \times 5 \mathrm{E})$
2	' M^{\prime}	ASCII 'M' (0x4D)
3	D'	ASCII ‘D' (0×44)
4	$‘ ‘$	ASCII space (0x20)
5	m	See mode field table below
6	$‘$,	ASCII comma (0x2C)
7	'Ili'	See Ident field table below
8	\because,	ASCII comma (0x2C)
$9-12$	dddd	ASCII squawk code
13	e	See emergency field table below
14	h	Health bit in hex ASCII "1"
$15-16$	dd	Checksum of bytes 1 through 14. In hex ASCII i.e. "FA"
17	'r'	ASCII carriage return (0x0D)

Mode Field

m	Definition	ASCII
O	OFF/STBY	$0 \times 4 F$
A	ON	0×41
C	ALT	0×43
S	ALT	0×53
E	1090ES Only	0×45

Ident Field

i	Definition	ASCII
I	Ident Enabled	0×49
-	Ident is Inactive	$0 \times 2 \mathrm{D}$

Emergency Field

		Definition
0	ASCII	
1	Gene	0×00
2	Medical	0×01
3	Fuel	0×02
4	Com	0×03
5	Hijack	0×04
6	Downed	0×05
7	UAS Lost Link	0×06

The health indication is set to ' 1 ' to indicate that everything is operating normally.

Example: ^MD A,l,23540120\r
Mode ON, Ident active, Squawk 2354, No Emergency, Healthy

3 SAGETECH

The Ping200S transponder Control serial interface uses the following message data structure:

Start	Address	Type	ID	Length	Data	Fletcher	Checksum	End
$0 \times A 5$	0×01	1 Byte	0×00	Byte	0 to 255 Bytes	1 Byte	1 Byte	$0 \times 5 \mathrm{~A}$

The Start Byte precedes all messages and is fixed at 0xA5.
The Address is a one byte field that defines the destination. This is always set to 0×01.
The message Type is a one byte field that defines the message type.
The message ID is set to zero and the message.
The Payload Length is a one byte field indicating the number of bytes in the Payload Data field.

The transponder receives data such that the first data bit received is considered the least significant bit of a given Byte. The data format is considered Big Endian as the data bytes themselves within a multi-byte word are received most significant byte first.

The Fletcher checksum is a one byte field that holds the 8-bit Fletcher checksum. It is calculated beginning with the start byte through the last byte of the payload (inclusive).

The Checksum Byte contains a regular 8-bit arithmetic summation of the message starting with the Start Byte and ending with the last Byte of the Payload Data. The summation is performed assuming all bytes are unsigned, and the result is truncated to the least significant 8 bits.

The Fletcher and Checksum are calculated as follows:

```
uint16_t Fletcher16( uint8_t *data, int payloadLen )
{
    uint8_t sum = 0;
    uint8_t fletcher = 0;
    int index;
    for( index = 0; index <payloadLen+ 5; ++index )
    {
        sum += *data++;
        fletcher+= sum;
    }
    return ((sum <<8) | fletcher);
}
```


3.1 Preflight [0x02]

The preflight data message sets the Flight ID.

3.2 Operating [0x03]

The Operating Message:

- Sets squawk code (Mode A/4096 Code), altitude data (if desired), transponder mode, power up state and activates the IDENT function.

3.3 Data Request [0x05]

This message is a request for the transponder to send data in a response message. The type of data being requested is specified in the payload of this message, which contains a single byte that specifies the response message type. In response to a valid Data Request Message, the transponder sends an Acknowledge Message immediately followed by a response message.

3.4 GPS Data (Ping200S Only) [0x04]

GPS Data Message: Message type 0x04
The GPS Data Message:

- Provides the transponder with longitude, latitude, ground speed, course over ground, hemisphere, GPS validity data, and time of fix (GPS Time).
- If used, should be sent at regular intervals (between one and five times per second), typically at the nominal update rate of the GPS hardware.
- Requires GPS data (which can be obtained from the NMEA 0183 GPRMC sentence).

Note: If the Navigation Receiver Valid bit (in the Hemisphere byte) is 0 , then all data fields in the message are required to be valid, except for Time of Fix (which can be set to all spaces if it is not valid). If the Navigation Receiver Valid bit is 1, all data fields are considered invalid; sending the message with the Navigation Receiver Valid bit set to 1 has the same effect as not sending the message.

GPS Data Message structure:
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { GPS } & \text { GPS } & \begin{array}{c}\text { Speed Over } \\ \text { Longitude } \\ (11 \text { bytes })\end{array} & \begin{array}{c}\text { Course Over } \\ \text { Latitude } \\ (10 \text { bytes })\end{array} & \begin{array}{c}\text { Ground } \\ (6 \text { bytes })\end{array} & \begin{array}{c}\text { Ground } \\ (8 \text { bytes })\end{array} & \begin{array}{c}\text { Hemisphere } \\ (1 \text { bytes })\end{array}\end{array} \begin{array}{c}\text { (GPS Time) } \\ \text { (10 bytes) }\end{array} \quad \begin{array}{c}\text { Reserved } \\ \text { (6 Bytes) }\end{array}\right]$

3.4.1 GPS Message Payload - GPS Longitude [0x04 bytes 0-10]

3.4.2 GPS Message Payload - GPS Latitude [0x04 bytes 11 - 20]

GPS Latitude													
11	12	13	14	15	16	17	18	19	20				
LAT0	LAT1	LAT2	LAT3	LAT4	LAT5	LAT6	LAT7	LAT8	LAT9				

LAT0	LAT1	LAT2	LAT3	LAT4	LAT5	LAT6	LAT7	LAT8	LAT9	GPS Latitude
0×34	0×37	0×33	0×37	$0 \times 2 E$	0×33	0×32	0×34	0×30	0×30	$47^{\circ} 37.224^{\prime}$
0×34	0×39	0×31	0×37	$0 \times 2 E$	0×31	0×31	0×32	0×36	0×36	$49^{\circ} 17.11266^{\prime}$
0×32	0×37	0×35	0×39	$0 \times 2 E$	0×32	0×38	0×33	0×33	0×36	$27^{\circ} 59.28336^{\prime}$
\ldots										

GPS Latitude

Current GPS latitude is sent in the format of degrees, minutes, and fractions of minutes:
dddmm.mmmm (format of the longitude from GPRMC)
The value is sent as ASCII characters. The latitude in degrees, minutes, and fractions of minutes form is limited to five decimal places. This provides for a resolution up to 0.017 meters.
For example, if the Latitude is 49.285211 Degrees, multiply the number on right of decimal by 60 to get:
49 degrees, 17.11266 Minutes
Rewritten:
4917.11266 i.e. : ddmm.mmmmm

The packet structure would look like:
[34][39][31][37][2E][31][31][32][36][36]
NOTE: The GPS Status Byte contains a bit to declare if the Latitude is N or S . The number should NOT be sent signed.

3.4.3 GPS Message Payload - Speed over Ground and Course over Ground [0x04 bytes 21 - 34]

(

[^0]
3.4.4 GPS Message Payload - Hemisphere and Time of Fix (GPS Time) [0x04 bytes $35-51]$

[^0]: Course Over Ground
 Current GPS course over ground referenced to true north is sent in degrees. The data is sent as ASCII characters. 0 degrees is North, 90 degrees is East, etc. ccc.cccc (format of data)

 For example, if the course over ground is 165.5 degrees, the packet structure would look like:
 [31][36][35][2E][35][30][30][30]

